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A Didactic Explanation of Item Bias, Item Impact and Item Validity
from a Multidimensional ERT Perspective

Abstract

Many researchers have suggested ;11,1 thc main cause of item bias is the misspecification

of the latent ability space. That is, items v, hich measure multiple abilities are scored as though

they are measuring a single ability. If two different groups of examinees have different

underlying multidimensional ability distributions and the test items are sensitive to these

differences, then any scoring scheme that does not reflect all of the skills in the interaction of

the items and examinees (the complete latent space) will likely produce item bias. It is the

purpose of this paper to provide the testing practitioner with insight about the difference between

item bias and item impact and how they relate to item validity. These concepts will be explained

from a multidimensional item response theory (IRT) perspective. Two detection procedures, the

Mantel-Haenszel (as modified by Holland and Thayer) and Shealy and Stout's Simultaneous Item

Bias (SIB), will be used to illustrate how practitioners can detect item bias.
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Int roduction

It is the purpose of most standardized tests to distinguish between levels of ability for

individual examinees. These types of tests are purposely designed to rank order individuals. To

rank examinees accurately requires that all of the items in a test be able to discriminate between

levels of the same purported skill. Problems are encountered when a test contains items that

discriminate between levels of several different abilities or several different composites of
abilities. Unfortunately, because ordering is a unidimensional concept, we cannot order
examinees on two or more skills at the same time, unless we base our ranking on a weighted sum

of each skill being measured. Specifically, if a test is multidimensional there is no unique one-

to-one mapping between an examinee's estimated unidimensional ability and the examinee's

underlying composite of abilities.

To study the relationship between an examinee's latent ability and the probability of a

correct response, researchers use probabilistic models of item response theory (IRT). These

models describe the interaction of an examinee's level of ability and the difficulty and
discrimination parameters of an item. In most cases, practitioners tend to use unidimensional

IRT models, even though the score may reflect a composite of multiple abilities. Problems

related to this model misspecification have plagued psychometricians for years, especially when

they try to model cognitive processes (cf. Traub, 1983).

It is important that practitioners who use IRT models realize that items and examinees

interact, and it is this interaction that needs to be closely examined. The interaction between a

group of examinees and items on a test will be unidimensional in basically one of three ways.

An item may be sensitive to, or require the application of, several skills to produce a correct

response. But if a group of examinees only vary significantly on one of the requisite skil4, or

on the same composite of skills, the interaction can appropriately be modeled unidimensionally.

The reverse scenario is also possible. Test items may be sensitive to, or capable of measuring,
only a single skill, or the same composite of skills, and, although a group of examinees vary

along several skill dimensions, the interaction will be unidimensional. The third situation is the
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degenerative case in which the test is only one item long. Considered by itself one item is

always unidimensional. It can probably be argued that a test composed of two or more items

is never exactly unidimensional.

The dimensionality imposed by this test-examinee interaction (i.e., the complete latent

ability space dimensionality) is the intersection of the set of abilities, each of which at least one

item is capable of measuring, and the set of latent abilities on which the examinees may vary.

It becomes readily apparent that the process of measuring different groups has many possible

interactions. In particular, because of individual differences, the dimensionality for a given test

may change from one group of examinees to another.

Because the measurement process can be quite complex, researchers and practitioners

estimate examinee abilities and item parameters using large grourr of individuals, all assumed

to be homogeneous in the skills they bring to bear on each of the items. If the groups are not

homogeneous and thus have different underlying ability distributions the potential for item bias

exists.

One approach used to determine if an item is biased is to compare the two sets of

parameter estimates, each obtained by independent calibration of the test on different groups of

intelest. Before two sets of unidimensional IRT estimated item parameters can be compared they

must first be placed on the same scale. Because of the indeterminacy of the IRT ability scale

(Hambleton & Swaminathan, 1985, p. 55) the unidimensional item parameter estimates for each

group may be determined from two distinct ability scales which differ in their metric. If the

interaction between the examinee latent space and the item is unidimensional, the item parameter

estimates should be invariant up to a simple transformation. That is, the only differences that

can occur are due to group ability differences (impact, formally defined below) and these can

be resolved via the linear transformation. However, if the examinee-item interaction is

multidimensional and the items are calibrated to fit a unidimensional model, group ICC

differences cannot be resolved by a sitzle transformation. The problem that arises is that after

a single transformation is applied and the resulting ICCs are compared, differences that appear

may be due to impact, bias, or bias and impact acting together.

To examine bias within a multidimensional framework the true and the nuisance ability

dimensions need to be identified and handled separately. More precisely, researchers must

5
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examine the conditional distribution of the nuisance ability for each level of the valid ability.

If this conditional distribution of the nuisance ability differs across groups of interest the potential

for bias exists. This is what motivates Shealy and Stout's (1991) mathematical conception of
potential for bias.

The issue of item bias and construct validity are interrelated. That is, the number of
skills being measured and the degree to which comparisons between groups are appropriate is

a construct validity issue. If a test lacks construct validity it must contain items that are

measuring skills other than those purported to be measured and hence the potential for item bias

also exists. This bias may be realized if groups of interest differ in their underlying distribution

of these extraneous skills. Simply put, items invalid in the construct sense are a necessary, but

not sufficient cause of item bias. If all the items are measuring only the valid skills or constructs

any group differences reflect impact, not bias. In this paper impact is formally defined as the

difference in group performance caused by valid skill group differences (e.g., proportion correct

difference between two groups of interest on a valid item).

Test creators, in establishing the construct validity of an instrument, specify what the test

is measuring and what the reported scores mean. For example, if a test is purported to be

measuring algebraic symbol manipulation it should contain items from the universe of algebraic

symbol manipulation problems. To the extent items measure supplemental abilities (e.g., reading

ability via "story problems") it decreases the degree of construct validity.

Another problem caused by lack of validity occurs when test scores change in their

interpretation at different points along the reported score scale. That is, the scale composite

being measured changes as a function of the reported score level. Such a concern was expressed

by Davey, Ackerman, and Reckase (1989). In all reported test results the assumption is always

made that scores throughout the range of the score scale represent different levels of the exact

same skill or exact same composite of skills. Changing conditional standard errors for different

levels along the score scale might, in part, be caused by the assessment of different skills.

The interaction between a test and a group of examinees can also disguise problems related

to validity. Within a test if items are measuring several different skills and the underlying

distributions for the groups of interest do nia differ on these skills, there can be no bias. Yet

the construct validity of the test will suffer (with equal deleterious effect on both groups)



6

because supplemental skills are being assessed along with the valid skills.

Item bias is attributable to the degree of item validity. A test item is considered to be

unbiased if all individuals having the same underlying intended-to-be-measured unidimensional

ability have equal probability of getting the item conect, regardless of group membership (Pine,

1977). If two groups have lifferent underlying multidimensional ability distributions, and the

test items are capable of measuring these multiple dimensions, and the dimensions are collapsed

into a single dimension (i.e., score) item bias may occur. Item impact occurs when groups of

interest differ in their performance on the skills being measured by the valid items. This is an

unavoidable outcome of most tests and should not be viewed in a pejorative manner. Impact

simply represents results caused by true differences in the target ability. By contrast test bias (cf.

Shealy & Stout, 1991) simply represents score differences caused by nuisance abilities.

It is the purpose of this paper to illustrate how the reduction of a two-dimensional latent

ability space to a single score and unidimensionality-based statistical procedures such as those

employed in the calibration programs LOGIST (Wood, Wingersky & Lord, 1976) or BILOG

(Mislevy & Bock, 1986) can magnify the lack of validity in the form of item bias. Specifically

contrived examples will be used to illustrate both impact and bias. Within the context of these

examples two nonparametric DIF detection approaches, the Mantel-Haenzsel (Holland & Thayer,

1987) and Shealy and Stout's Simultaneous Item Bias (SIB) (1989) will be described. These

specific approaches are used because of their strong theoretical basis for detecting bias as separate

from impact.

Theoretical background

Insight about the multidimensional nature of items and examinee abilities can be easily

understood through the use multidimensional item response theory (MIRT) models. The work

of Reckase (1986), which formally defines MIRT item characteristics, provides a basis for

examining the interaction between multidimensional items and the multidimensional ability

distributions associated with groups of examinees.

Reckase's work is based upon the MIRT compensatory model (M2PL) in which the

probability of a correct response to item i by examinee j is given as



P(X1I-1 I ai, 8.1)-
tal scl )e

«c1-)1.0+e A

where X, is the score (0,1) on item i by person j,

a. is the vector of item discrimination parameters,

di is a scalar difficulty parameter of item i, and

O. is the vector of ability parameters for person j.

7

(I)

In a two dimensional latent ability space (e.g.. math and verbal ability dimensions), the

ai vector designates the composite of 0/ and 02 that is being measured. If a/ = a2 both

dimensions would be measured equally well. However, if a/ = 0 and a2 = 1.0 discrimination

would only occur along the 02 dimension. Using Reckase's notation, the amount of different

composite.; of skill being assessed can be readily apparent. That is, if all of the items are

measuring exactly the same (01,02) composite (i.e., the same "direction" on the (01,02)

coordinate system) the test would be strictly unidimensional. The more varied the composites

that are being assessed, the more multidimensional the test.

Using the notation of Reckase (1986), an item i that requires two abilities for a correct

response can be represented in the two-dimensional latent ability space as a vector. The length

of the vector for a given item i is equal to the degree of multidimensional discrimination,

MDISC given as

AIDISCi-Val2i+a 22.1 (2)

MDISC is analogous to the unidimensional IRT model's discrimination parameter. The

measurement direction of the vector in degrees from the positive 01 axis is

a.-arccos1 2 2
a"+(a22

This angle represents the composite of the 01-02 ability space that item i is measuring.

(3)
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The item vector is graphed orthogonal to the p= .5 equiprobability contour. In the

compensatory model described in (1) these equiprobability contours are always parallel. The

distance, D, from the origin to the p=.5 contour is computed as

-diDi-
MDISC

(4)

D is analogous the unidimensional difficulty parameter. Because the discrimination parameters

can never be negative, the item vectors can only lie in the third quadrant (representing easy

items) or in the first quadrant (representing more difficult items.) Figure 1 illustrates an item

vector whose M2PL parameters are given as a/ = 1.2, a2 = .7, and d = 1.5. Also illustrated

in Figure 1 are the equiprobability contours.

Insert Figure 1 about here

Whereas Reckase's work is more from a geometric perspective, other researchers have

approached the relationship between the multidimensional and unidimensional IRT models from

an analytic perspective. Wang (1986) determined explicit algebraic relationships between the

unidimensional estimates (e.g., via LOGIST) and the true multidimensional ability and item

parameters for the case where the response process is modeled by the M2PL MIRT model and

the unidimensional IRT model is the two-parameter logistic:

e
1.7.2,0e-bp

p(X-110,a1,b1)-
1.7a (111-b )1.0+e '

(5)

where ai and bi are the uniclimensional discrimination and difficulty parameters and 0 is the

unidimensional latent ability measure. Wang demonstrated that when the 2PL MT model is used

to calibrate multidimensional dP.` the resulting unidimcnsional scale, termed the reference

composite, is actually a weighted composite of the underlying multiple dimensions. The weights

determining the direction (i.e., relative proportion of 0/ to 02 being measured) of the reference
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composite are a function of the multidimensional discrimination parameters and the variance-

covariance matrix of the underlying multidimensional ability distribution. The concept of the

reference composite is important because it provides an interpretation of the unidimensional score

scale. Using Wang's formulation, Ackerman (1989) illustrated how group performance and

ultimately item bias could be predicted given the underlying ability distributions of two groups

of interest and the two-dimensional item parameters.

If all of the items had the same MDISC value, the reference composite would be the

average "direction" (principal component) beir.g measured by all of the items. Note that the test

could be "almost unidimensional" or "quite multidimensional" and still have the same leference

composite because the reference composite is, in a sense, only an average direction.

According to Shealy and Stout (1991), all items having a particular measurement
direction, avalid (recall (3)) constitute the valid subtest. The intuitive idea os that this specified

direction embodies exactly the composite of abilities the test is designed to measure; that is, all

items measiffing this composite are valid. In any test, however, items will all have different a ' s

no matter how carefully the test has been constructed. I thus propose to formally define a

validity sector as a narrow sector (and its mirror image projecting through the origin) as

constituting the valid subtest items. Figure 2 displays a possible validity sector for a given test.

This provides practitioners with a conceptual framework that can be used to describe the range

of composite skills that a test is suppose to measure. Items which lie outside of the validity

sector are measuring nuisance skills and should be deleted by the test constructor if the gcal to

make the test more homogeneous and to increase internal consistency. Each test's validity sector
will consist of two sectors, one which lies in the first quadrant and contains difficult valid items

and its mirror image which lies in the third quadrant and contains only easy valid items. The
width of this sector would obviously vary depending upon how narrowly the valid construct can

be defined. An example of a validity sector in shown in Figure 2.

Insert Figure 2 about here

I I i
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A possible measure of item validity, called the construct validity index, CVI, is a

function of the direction a an item is measuring (but not the amount of discrimination (MDISC)

in that direction) is

CV/i cos2( I a - a vadreicow, I ) . (6)

In this equation a . represents the angle of the reference composite of those items that

are chosen as the items that best measure the purported trait (i.e., a valid subtest from the

Shealy-Stout perspective or a valid sector from my perspective).

Using MIRT models, practitioners can actually visualize the degree of homogeneity of

the abilities being assessed. Somewhat ironically, it is the reference composite that determines

the potential for item bias. Problems can arise due to a large number of invalid items (each

lying slightly outside the validity sector) or due to the large magnitude cf discrimination of a few

invalid items. If there are enough invalid items the reference composite can be "pulled" outside

of the validity sector. Such a test is considered to be construct invalid because the meaning

attached to the unidimensional score scale (i.e., the reference composite for the test) is different

than intended. Unidimensional bias analyses could be misinterpreted on such tests because valid

items might be determined to be biased and vice versa. Specifically, analyses which condition

on the score scale provided by the entire test may actually be conditioning on a scale whose

direction is more heavily influenced by nuisance abilities than valid skills. This potential exists

in bias detection procedures that employ all of the items in the analysis, such as the Mantel-

Haenzsel. Practitioners should (and can easily) perform the MH procedure by conditioning only

on the examinees' scores from the valid items. The concept of conditioning on only a valid set

of items is central to the Shealy-Stout procedure (1989).

One factor which determines the orientation of the reference composite is the principal

axis of the underlying ability distribution. This is illustrated in Figure 3. In this diagram each

pair of two ellipsoidal contours represents the density of two distinct two-dimensional latent

ability distributions for groups, A and B. Also drawn on the plot are two equally discriminating

items. Item 1 (al = 1.3, a2 = .4, d = -1.0) has a measurement angle of 170; Item 2 (a/ =

.4, a2 = 1.3, d = -1.0) has a measurement angle of 780. The reference composite was

computed for this two-item test for each group using Wang's (1986) formulation. The reference

1 1
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composites are illustrated as a dotted vectors. The reference composite for Group A, which has

a much greater 02 than 0/ variance (02e, .5, clit = 2.5) lies at an angle of 590 above the

positive 0/ axis. Group B which has much greater 0/ than 02 variance ( 002, = 2.5, 0022 = .5)

has a reference composite whose angle is only 31°. Thus, Figure 3 clearly shows that even

though each group would be administered the exact same two multidimensional items, the

undimensional interpretation (e.g., via LOGIST) of the measured skill would be different for

each group because of the influence of the items' interaction with the different underlying ability

distributions. The closer a multidimensional item's measurement angle, a, is to the direction of

the ability group's principal axis, the larger its estimated unidimensional discrimination parameter

will be. If one were to estimate the unidimensional discrimination of the Item 2, for each group

in Figure 3, the estimate for group A would be larger. Thus if a test contains several invalid

items and their as are all close to the orientation of the latent ability distribution of a particular

group, the reference composite for the group, which is influenced by the interaction of the

multidimensional discrimination power of an item and the variance-covariance structure of the

multidimensional latent ability distribution, could be pulled outside the validity sector.

Insert Figure 3 about here

Bias, according to Shealy & Stout (1991), can tie measured by examining the difference

in the marginal item characteristic curves (ICCs) for the two groups of interest. The marginal

ICC for a particular group is computed by

P(Xj-1 I e.0)-fP, 11 101 n (7)

where P(8,T)) is the M2PL response function defined in (1) and .01 is the specified group's

conditional distribution of the nuisance dimension, Ti , given a fixed value of 0, the target ability.

This is the ICC that would be obtained via calibration using LOGIST, if the test was strictly
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unidimensional (because there is in effect no nuisance dimension ri to be marginalized out by

integration.). If the test is measuring two abilities this represents the ICC that would be obtained

if differences in the nuisance direction are integrated out. It is important to note, that ifAnie)

is the same for both groups, bias cannot occur because examinees of equal 0 ability will have

the same probability of getting the item right.

Bias detection methods

Although there has been a proiiferation of methods to detect item bias this paper will

focus only on two, the MantPl-Haenzsel (MH), Holland & Thayer (1988) and Shealy and Stout's

SIB (1989). Both of these procedures are nonparametnc and thus require no model calibration.

However, they do have an IRT framework and as such they will be explained within the IRT

context that has been already developed.

The MH procedure, when placed in an IRT framework, is analogous to examining item

bias using the one-parameter Raasch model. In this model all items are believed to be equal in

discrimination, a tenuous assumption at best. As such the ME procedure is only sensitive to

uniform bias. An item displays uniform bias if its 1CCs for the different groups differ by only

a horizontal translation (i.e., they are parallel but not coincident.) It is important to note that

if the response process is modeled using the 2PL or 3PL IRT models, the ICCs may be non-

parallel, causing non-uniform bias. By including the suspect item in the matching criterion it

can be shown (Holland & Thayer, 1988) that, when all of the items exhibit no bias except the

suspect item, the procedure partials out the effect due to impact in the case of the Raasch model.

Thus, the AMH, the theoretical index measuring the amount of bias of an item for two groups

from the Mantel-Haenzsel perspecfive, is given by

A MH - -2.35(b1-10 (8)

where bf and br are the Rasch difficulty parameters for the marginal ICCs of the studied item

given in (6) above for the focal and reference groups respectively. The A MH index represents

the difference in the mean horizontal distance between the marginal ICCs and has a common

log odds ratio. (Note that when A MH < 0 the studied item is biased against the focal group.)
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The horizontal direction is considered because the MH statistic is examining differences in the

odds ratio at each score level for the two groups of interest. Some studies (Shealy, 1989;

Shealy & Stout, 1991) have reported that the MH chi square procedure is reasonably robust

against inflated Type I error when impact is present as well as robust against loss of power when

uniform bias is present, (even if the generating model is a 2PL or a 3PL IRT model).

Shealy and Stout hay: a similar theoretical item (and test) bias index called buni (Shealy

& Stout, 1991) which, in the IRT context, is the vertical distance between the marginal ICCs

of the studied item (with respect to @, the valid subtest ability). This index has a simple

empirical interpretation. It is the average difference in probability of correct response

experienced by the two groups for the studied item with impact partialled out. In this sense bum

is similar conceptually to the Standardization index (Dorans & Ku lick, 19S6). Computationally

ban, is expressed by

f DTR(8)-TAO)16(6)dO (9)

where TR(0) and T(0) are the marginal ICCs of the suspect item for the reference and focal

groups respectively given by (7) and fp.40) is the 0-marginal density of the focal group. Shealy

and Stout also have another index, bgen, which is identical to (9) except that the absolute value

of the difference between the two marginal ICCs is computed. This index is designed for cases

in which nonuniform bias would occur.

One way to express the potential for bias from the Shealy-Stout perspective is by

examining the difference between the expected values of the reference and focal group i le
conditional distributions. If this difference is zero, there is no potential for bias. But by

examining the expression of this difference it becomes quite clear what differences in the

underlying ability distributions will produce bias. That is, the difference between the expected

value of the conditional distributions for a given value of y can be expressed as

A
Eh /PI Eli All- (11,11-1.41,) (p

a
)(3-N1)- (1) )(8 Pod

OF

(10)

By examining ways in which this difference is not zero, one can obtain insight into what could

cause bias. The difference may be nonzero (or the potential for bias may occur) if

1 4
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1) the 0 means are not equal;

2) The T1 means are different; this is one obvious source of potential bias - differences

in the nuisance ability

3) The ratio a" is not the same for both groups; this is a second source of potential bias
06

and closely relates to the above discussion of how the shape of the underlying

multidimensional ability distribution affects the size of the unidimensional parameter estimates.

4) A fourth source of potential bias exists if the correlations between the valid and

nuisance dimensions are not the same for both groups. Obviously there are also many possible

combinations that could produce potential for bias or a combination of bias and impact. The

point is that any choice of the 10 parameters determining the focal and reference ability

distributions that cause Eh RIO] - Ein Fie] * 0 constitutes potential for bias at 0. Similarly, any

choice that produces Eiti Ale] - n plel - 0 rules out bias at 0.

The Shealy and Stout test statistic and the corresponding estimator gmg of the amount of

bias, are comparably new and do offer the researcher several advantages over the MH test

statistic and corresponding estimator Awl. They were developed from a multidimensional

modeling perspective and emphasize the examination of bias at the test level rather than the item

level. They can be used to look at several items simultaneously whereas the MH approach

examines each item individually. The Shealy and Stout (SIB) procedure also offers the flexibility

of letting the practitioner decide which items compose the "valid" subtest. Thus, by forcing the

practitioner to identify the valid items, there is less risk that the reference composite will lie

outside the validity sectors than in the MH approach in which users typically condition on all of

the test items. A third advantage is that the SIB approach encourages researchers to examine the

item bias cancellation effect described by Rosnowski (1987), which can occur if there are two

or more nuisance dimensions.

To help the practitioner better understand what item bias is, what impact is, and how

he/she can detect bias, several examples will be illustrated. Although they are contrived for

1 a
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illustiation purposes they are still thought to be realistic. It is believed that underlying group

ability differences can result quite easily due to curricular or instructional differences. In all of

the subsequent examples bias will be demonstrated from a two-dimensional perspective, in which

the horizontal axis (0) is the assumed to be the valid test direction and the vertical axis (n)
represents the nuisance dimension. (In reality there are likely to be several nuisance

dimensions.) In each example the MH and SIB theoretical indices measuring the amount of bias

will be computed.

Assume further that it is our task to examine the same two items, (Item 1 and Item 2)

from a given test to see if either item is biased against either of two groups, a Reference group

and a Focal group. The M2PL parameters for Item 1 are a/ = 1.5, a-) = 0.0, and d = -1.5.

Thus, this item is measuring only the valid dimension and hence sensitive to impau but not bias.

Item 2's parameters are al = 1.06, a2 = 1.06, and d = -1.5. Item 2 is measuring both

dimensions equally well and thus is sensitive to bias. It should also be noted that MDISC and

d values are the same for both items.

Obviously there are many ways in which the two groups of interest can differ in underlying

ability distributions but for didactic purposes only a few are illustrated here. The examples

chosen follow directly from the discussion of Equation 10; in each case EA. 10 will be evaluated.

(Furthermore, for the sake of simplicity, calculations will be worked with as though the

reference composite was the same for each group. Although in reality if the underlying ability

distributions are different the references composites for two groups will likely also be different.)

CASE 1 - Equal 0,11 distributions: no bias, no impact

Assume that the two-dimensional ability distribution for Reference group and the Focal group

can be described in the following manner:

Group Ref

Mean vector (13, n)

Variance-covariance

(0.0,0.0)

16

Foc

(0.0,0.0)

1 .0 .5 I

.5 1.01
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Any differences in the conditional distribution of ri le represents a potential for item bias

that will be realized only if an item is measuring the n dimension to any degree. However, in

this case, because the underlying distributions are identical the 0- and n -marginal ICCs are

coincidental for each item. Also, the conditional distributions are equal. Thus, it is easily seen

from (10) that EN RIO] - Fle] - 0 at every 0 (i.e., no potential for bias exists.) The

theoretical values of the 2PL IRT model difficulty and discrimination parameters were

approximated from numerically derived the ICCs (cf. Wang, 1986). For each group b = .99

and a = 1.43 for item 1 and b = .93 and a = 1.11 for item 2. These ICCs are displayed in

Figure 4 along with the n marginal distribution for each group. Because the underlying

distributions are identical both groups perform identically and the A MH and buni bias indices

both equal zero. Likewise the n marginal distributions are coincident.

Insert Figure 4 about here

CASE 2 - Unequal 0 means: uniform bias

Assume that the two-dimensional ability distributions are the same as in Case 1 except for the

mean vectors. Let the Reference group (O-,-"n) vector be (1.0,0.0) and for Focal group, (-

1.0,0.0). Contour plots of the two-dimensional ability distributions and their marginals are

illustrated in Figure 4. Values along the contours represent the densities for each group

multiplied by 100.

Insert Figure 5 about here

From (18) it can be seen that from (10) that Elq RIOI --Eh 4.101 - -2 for every 0.

I I
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Despite the fact that the n marginals are identical, as seen in Figure 5, the potential for bias

exists and in fact is Againg the reference group. Comparing the 0-marginal ICCs (Figure 6)

reveals a noticeable difference in probability of a correct response for both groups for the second

itcm.

Insert Figure 6 about here

The theoretical marginal ICCs for item I are identical, with 2PL parameters of a = 1.43

and b = .99. Somewhat bewildering but consistent with (10) is that item 2 actually favors the

Focal group! Why this occurs can also seen in Figure 5 by examining the expected value of an n

"conditional slice" at 0 = 0.0. Because of the positive correlation between 0 and n the Focal

group will have the higher expected value. For item 2 the Reference group's parameters are a=

1.10 and b =1.25 and for the Focal group, a = : .10 and b = .60. This case exemplifies

uniform bias. The theoretical buni and A MH indices for item 2 are -.06 and +1.53,

respectively. (It should be noted that the buni value is much smaller because it is weighted by

the density of the Focal group which does not "overlap" the ICC appreciably.)

CASE 3 - Unequal ti -means: uniform bias

In this case the valiance-covariance structure is the same as in the previous two cases. The

difference between the focal and reference groups in their mean ability vectors. The

vector for the reference group is (0.0,1.0) and for the focal group, (0.0,-1.0). Thus (10) yields

Eh Rio] Ejn - 2 for every 0. This is shown in Figure 7. Because no differences exist

between the 0-marginal distributions there can be no impact.

Insert Figure 7 about here
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The 0 marginal ICCs for the two groups for item 2 are shown in Figure 8. These ICCs

represent still another example of uniform bias. This will occur if the only difference between

the underlying ability distributions is between the ri means.

Insert Figure 8 about here

The amount of bias is a function of the degree to which an item measures the n -dimension, as

well as the amount of potential for bias as expressed in (18). That is, with all other relevant

factors kept constant, if an item had an a-angle (Eq. 2) greater than Item 2's 450 the 0-marginal

ICCs would be even further apart than illustrated in Figure 8.

The theoretical unidimensional item parameters are a= 1.43 and b = .99 for item 1 for

both groups. The a for item 2 is the same for each group, 1.11, but the b's are different: .28

for the Reference group and 1.57 for the Focal group. The A MH value and the buni values

are -3.00 and .29, respectively.

Case 4:Unequal ft variances-nonuniform bias

In this case the reference group and the focal group have identical mean vectors,

(0.0,0.0), identical 0 variances, 1.0, and identical 0,n correlations, .5. The only difference

between the two underlying distributions is that the q variance for the Reference group is .5 and

for the Focal group 2.5. These distributions and their marginals are illustrated in Figure 9.

By (10) the potential for bias is given by Eh RIO] - Eli Fie] - (1*-a)e. Interestingly, if 0 is
4

negative the item will favor the Focal group; if positive the item will favor the Reference group.

This result is an artifact of nonuniform bias.

Insert Figure 9 about here

/ 9
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The theoretical unidimensionai parameters are the same for each group for item 1: a =
1.43 and b =.99. However, nonuniform bias is illustrated in the theoretical item parameters for
item 2. For this item, a = 1.14 and b = 1.02 for the Reference group and a = 1.02 and b =

.77 for the Focal group. The greater the difference between the n variances the greater the

differenu in discrimination parameters. The Omarginal ICCs for items 1 and 2 are shown in

Figure 10. Although not appropriate for this situation the p MH value is -.60. The bgen value

for this item is .19.

Insert Figure 10 about here

Case 5 - Unequal pe.n s : nonuniform bias

In the last case the underlying ability distributions have the same (6,17j) vectors, (0.0,0.0) and

have unit variance for both the n and 0 dimensions. The only difference between the two

groups is that the correlation between the valid and nuisance abilities is .8 in the Reference group
and .2 in the Focal group. These distributions and their marginals are shown in Figure 11. In

this case the 0 and n marginal distributions are identical for both groups. According to (10)

Eh RIO] - Etn FIel .130 , again indicating nonuniform bias.

Insert Figure 11 about here

The 0-marginal ICCs are illustrited in Figure 12. Differences only exist in the item

which would be sensitive to correlational differences, item 2. The theoretical parameters for
item 1 are, as in the first four cases, a = 1.43 and b = .99 for both groups. Because item 1

measures in the direction of the computed reference composite it can never be biased, despite

2 (1
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differences in the ability distributions for the two groups. However, for item 2 a = 1.48 and

b = .78 for the Reference group, and a = .84 and b = 1.14 for the Focal group. Because the

Reference group has a higher correlation its underlying distribution (Figure 11) its levels of

ability can be more clearly distinguished by item 2 than can the Focal group. As in the previous

case the A MH index of .86 is misleading because the ICCs violate the assumption of equal a's.

Unlike the previous case, howevet , the ICCs actually cross. The bgen value is .16.

Insert Figure 12 about here

Empirical example

To further illustrate the two bias detection procedures from a more realistic perspective

a Monte Carlo study was performed. In this study estimated M2PL item parameters were used

as a simulation model to generate two data sets, each having a different underlying two-

dimensional ability distribution. The estimated parameters were from a calibration of Form 26A

of the ACT Assessment Programs Math Usage Test. These parameters were reported by Reckase

(1985). A subset of 25 items was selected. For two of the items the reported difficulty

parameter estimates were altered to make the items more easy. The vector plot of the 25 items

is shown in Figure 2. This specific subset was selected to illustrate how a practitioner, after

calibrating items using the M2PL model could select a valid sector. Items lying outside the

sector are invalid and would be suspect of being biased. Seven items in this case fall outside the

validity sector. To simulate bias, response vectors using two distinct distributions of ability were

generated. Using this simulation model 1000 reference group examinee response vectors were

generated using a moo mean of (1.0, 0.0). In this group the two dimensions were uncorrelated

with the 0-variance being 1.5 and the n -variance being .5. The same number of subject

responses were generated for a focal group which had a 60 vector of (0.0, 1.0). The two

ability dimensions were also uncorrelated for this group and the 0-variance was .5 and the n

21
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variance was 1.5. The response matrices were then analyzed using the A MH and bias

estimation procedures.

Because of the differences between the underlying two-dimensional ability differences the

reference composite was noticeably different for each group. For the Reference group the

reference composite direction was 17.55° and for the focal group it was 43.050. This huge

differences in reference composites is a strong signal that the unidimensional score scales (and

also the number correct score scale) for each group are not representing the same skill in the two

groups. Thus caution should be used in interpreting the results of the j MH estimator applied

to the entire test, because although the statistic is computed by conditioning on number correct,

the same number correct score does not mean the same thing in both groups. This problem

would not have arisen if the data was truly unidimensionaL Thus the I MH estimator was

calculated twice, once conditioning on the entire test and once conditioning more appropriately

only on the valid (and essentially unidimensional) test (i.e., the first 18 items, those lying in the

validity sector.)

The SIB procedure circumvents the above problem by allowing the practitioner to select

the valid items. In this exainple items which fell within a validity sector centered at 300 from

the 0/ axis were selected as being the most valid items. Using these items as a basis of

comparison establishes a reference composite of 11 920 for the reference group and 11.030 for

the focal group, essentially the same angle for both groups. By selecting these items as the valid

test the score scales thus now represent different levels of the same sidll for both groups.

For each item the angles of measurement, a, the validity index (eq. 15), the

unidimensional analog of discrimination, MDISC, and the estimator are presented in Table

1. The items were arranged in increasing order of a.

Insert Table 1 about here

The gm, clearly indicate the bias of items 20 through 25, but fail to suggest that the
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invalid item 19 is biased. However, item 19 was one of the items for which the difficulty

parameter was changed to make it considerably more easy (see Figure 2). Thus the inability to

identify it as biased might be expected.

Two sets of Mantel-Haenzsel results for the same 25 items are reported in Table 2. The

first column of a MH values is when the conditioning score was only the 18 valid items plus the

suspect item. Six MH analyses were computed. one for each of the nonvalid items 19 - 25.

Each analysis yields a Awl for the first 18 items and a amH for the part:cular suspect item

of the run. The results of these runs were averaged for Awl for items 1 - 18. The :iMH

indicate that the last five items are clearly biased. The high index for item 2 cannot be

explained, but recall this item was also given a high index as well. As with S item 19

fails to be flagged as biased. It is interesting to note that the two procedures are in almost total

agreement.

Insert Table 2 about here

To illustrate how the MH procedure can be misused the A MH value was computed for

all 25 items. As was mentioned above, this would be inappropriate because the reference

composite for all 25 items is not the same for each group. The result, somewhat analogous to

comparing "apples to oranges" would suggest that items 1 - 8, 11 and 14 are biased items as

well as the final five items. In this case, items which are clearly valid, are indicated to be

biased.

CONCLUSION

The main purpose of this paper is to provide the testing practitioner with insight about

what causes items to be biased. Obviously the issue of bias tied closely to the concept of

construct validity. Using a multidimensional IRT perspective practitioners can easily identify the

composite of skills items are measuring and thereby establish a test validity sector. The task of
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identifying invalid items becomes quite simple. Once identified these invalid items should be

checked for possible bias using either the MH or SIB approach or possibly some other approach..

A secondary purpose of this paper was to encourage both the test constructor and the test

user to make a conscientious effort to clearly identify what skills are being measured by a
particular test. Items which measure the target CI purported skills need to be identified and those
which do not need to be "weeded" out. Without doing so could render a bias analysis
uninterpretable as was illustrated in Table 2.

This paper takes the view that empirically two or more items will always produce
multidimensionality, and as such their parameters need to be estimated ising multidimensional

models. Such modeling requires extremely large sample sizes which may limit the number of
testing situations that can use such an approach. Future research needs to examine what
multidimensional analyses can be conducted with smaller sample sizes. Additionally researchers
need to provide practitioners with clear guidelines about what approaches to use and in what
situations to use them, as well as what approaches need to be avoided. It should be apparent
that, as much thought must go into the analysis of bias for a test as went into the original
construction of the test.
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Table 1

Summary Shea1y-5toutjadices for thc simulated 25-item test.

Item a CVI MDISC

1 0 .97 .87 .05
2 0 .97 1.92 .10
3 0 .97 2.00 .07
4 1 .98 1.22 .03
5 2 .98 1.41 .07
6 6 .99 1.21 .03
7 6 .99 1.73 .03
8 7 .99 1.23 -.01
9 12 .99 .88 -.01

10 13 .99 .98 -.06
11 13 .99 1.61 .02
12 14 .99 1.37 -.03
13 15 .99 .72 -.03
14 17 .99 1.60 -.04
15 23 .96 .59 -.09
16 23 .96 1.15 -.05
17 25 .95 2.00 -.02
18 25 .95 .77 -.03
19 48 .64 .58 -.03
20 66 .42 1.20 -.25
21 67 .41 1.31 -.28
22 75 .29 1.13 -.28
23 78 .25 1.16 -.29
24 78 .25 1.81 -.34
25 87 .06 1.94 -.37

(
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Figure Captions

Figure I,. Afl equiprobability contour plot of the response surface for a two-dimensional item.

Figure 2. Validity sectors for a 25-item test.

Two distinct two-dimensional underlying ability distributions and their reference
composites for the two indicated items.

Figure 4. Coincident marginal ICCs for items I and 2 for Case I plotted along with the
coincident 0-marginal distribution for each group.

Figure 5. Contour plot of the underlying two-dimensional ability distributions for the Reference
and Focal Groups for Case 2.

Figure 6, Marginal ICCs for item 1 and item 2 and the e-marginal distributions for the
Reference and Focal Groups for Case 2.

Figure 7. Contour plot of the underlying two-dimensional ability distributions for the Reference
and Focal Groups for Case 3.

Figure 8. Marginal ICCs for item 1 and item 2 and the 0-marginal distributions for the
Reference and Focal Groups for Case 3.

figure 9. Contour plot of the underlying two-dimensional ability distributions for the Reference
and Focal Groups for Case 4.

Figure 10. Marginal ICCs for item 1 and item 2 and the 0-marginal distributions for the
Reference and Focal Groups for Case 4.

Figure 11. Contour plot of the underlying two-dimensional ability distributions for the Reference
and Focal Groups for Case 5.

Figure 12 Marginal ICCs for item 1 and item 2 and the 0-marginal distributions for the
Reference and Focal Groups for Case 5.



3.0

Figure
1

2.0

1.0

02 o.o

-1.0

\\\\\-2.0

-3.0
1 1

-3.0 -2.0 -1.0 0.0 1.0

Ui
2.0 3.0



5.0 -4.0 -3.0 2.0

Validity -Lo

Figure 2

5.0

4.0

3.0

2.0

1.0 Sector
Validity.

-3.0

4.0

-5.0

02

31)

1.0 2.0 3.0 4.0 5.0

ei



Cr)

Figure 3

Reference Composite

Group A

Group
A

3.0 2.0 1.0 0.0

Theta 1

RefereLmce Composite

Group B

I tem 1

CO Group B

1

1.0 2.0 3.0



Figure 4

e

:-I 2



Figure 5



1.0

0.9

0.8

0.7

0.6

P(6)0.5

0.4

Focal

Group

Figure 6

Item 2,

Foca I Group: et /
/ e

/ 1 tem 2 , Referencet ,
Group

r
e

r
t

c I

t I

t

/

t ' Reference
e

, r - G roup

I tem 1

r

rtt0.3 r
r //

A f I %

rt
Ii \

0 2 e ,'
. r

. . . t .t, . ., .'
1.,. .'

0 .1 . of" .
.. \

I.-- , ......-- ......-

0.0
...- --- ...

4.0 3.0 2.0 1.0 0.0

4

1.0 2.0 3.0 4.0



Figure 7

Reference
Group

Focal

Group

-3.0 3.0

:10



1.0

0.9

0.8

0.7

0.6

P(9) 3.5

0.4

0.3

0.2

0.1

0.0
4.0

Figure 8

Item 2,

Reference Group

;
1r N.1

,:/ /
-1

../ /
..1 4 ./

..1

:r 1 .

.1 .1
/

i q
.4.

.... ..- .
.... -. .../

.... o'r r

/

rr /
v /

r /
7;r / 0;

1r 0 V .

3.0 2.0 1.0 0.0 1.0

z_ltem 2, Focal Group

I tem 1

2.0 3.0 4.0



Figure 9

Focal Group

Reference Group

-3.0 3.0



Figure 10

/
r.

tem 2, Reference Group
,

ii ,

4 ,

0.7 ,
,

0.6
I tem 1

-
/,

1 tem 2 ,
KO 0.5 - Focal G roup

0.4 -
ft \

/l \
/I

Jr/ ,,
0.2 - / ,

\// / , \
.1 / / \/ \/ / \

/OA ' 1
/

/ \ \// / 's
..,// / ... 1/ ".''.....

CI Cl

-4.0 -3.0 -2.0 -1.0 0.0 1.0 2.0 3.0 4.0



3.0

-3.0

Ficure 11

Reference Group

Focal Group

-3.0 15 0.0 1. 3.0



4

1.0-

0.9-

0.8-

0.7-

0.6-

p(C00.5-

0.4-

0.3-

0.2-1

0.1-

0.0
4.0

Figure 12

I tern

Reference

'

2,

Group

, j

/
)

)
I ;

Item 1

, 1

/ )
/ )
/ j

/ ) ,

a .t. I .1,

...1 4 I j

/ k! I
/ , k. /

/ I ,,,
/ , / \

i r
./ / /

1 I
./ I

/ ;
, I I
/ /

/ 1
I / S1

C k.

I / / \
W. / / S.

I. / /
e

I.
.-

e N..

- .... 1..
1C.

... ,-, ,.. ,^ ....

3.0 2.0 1.0 0.0 1.0 2.0

N.

Item 2, Focal Group

3.0 4.0


